skip to main content


Search for: All records

Creators/Authors contains: "Heart, Karen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data privacy requirements are a complex and quickly evolving part of the data management domain. Especially in Healthcare (e.g., United States Health Insurance Portability and Accountability Act and Veterans Affairs requirements), there has been a strong emphasis on data privacy and protection. Data storage is governed by multiple sources of policy requirements, including internal policies and legal requirements imposed by external governing organizations. Within a database, a single value can be subject to multiple requirements on how long it must be preserved and when it must be irrecoverably destroyed. This often results in a complex set of overlapping and potentially conflicting policies. Existing storage systems are lacking sufficient support functionality for these critical and evolving rules, making compliance an underdeveloped aspect of data management. As a result, many organizations must implement manual ad-hoc solutions to ensure compliance. As long as organizations depend on manual approaches, there is an increased risk of non-compliance and threat to customer data privacy. In this paper, we detail and implement an automated comprehensive data management compliance framework facilitating retention and purging compliance within a database management system. This framework can be integrated into existing databases without requiring changes to existing business processes. Our proposed implementation uses SQL to set policies and automate compliance. We validate this framework on a Postgres database, and measure the factors that contribute to our reasonable performance overhead (13% in a simulated real-world workload). 
    more » « less
  2. Data compliance laws establish rules intended to protect privacy. These define both retention durations (how long data must be kept) and purging deadlines (when the data must be destroyed in storage). To comply with the laws and to minimize liability, companies must destroy data that must be purged or is no longer needed. However, database backups generally cannot be edited to purge ``expired'' data and erasing the entire backup is impractical. To maintain compliance, data curators need a mechanism to support targeted destruction of data in backups. In this paper, we present a cryptographic erasure framework that can purge data from across database backups. We demonstrate how different purge policies can be defined through views and enforced without violating database constraints. 
    more » « less
  3. Compliance with data retention laws and legislation is an important aspect of data management. As new laws governing personal data management are introduced (e.g., California Consumer Privacy Act enacted in 2020) and a greater emphasis is placed on enforcing data privacy law compliance, data retention support must be an inherent part of data management systems. However, relational databases do not currently offer functionality to enforce retention compliance. In this paper, we propose a framework that integrates data retention support into any relational database. Using SQL-based mechanisms, our system supports an intuitive definition of data retention policies. We demonstrate that our approach meets the legal requirements of retention and can be implemented to transparently guarantee compliance. Our framework streamlines compliance support without requiring database schema changes, while incurring an average 6.7% overhead compared to the current state-of-the-art solution. 
    more » « less
  4. Data retention laws establish rules intended to protect privacy. These define both retention durations (how long data must be kept) and purging deadlines (when the data must be destroyed in storage). To comply with the laws and to minimize liability, companies should destroy data that must be purged or is no longer needed. However, database backups generally cannot be edited to purge “expired” data and erasing the entire backup is impractical. To maintain compliance, data curators need a mechanism to support targeted destruction of data in backups. In this paper, we present a cryptographic erasure framework that can purge data from all database backups. Our approach can be transparently integrated into existing database backup processes. We demonstrate how different purge policies can be defined through views and enforced by triggers without violating database constraints. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. The majority of sensitive and personal user data is stored in different Database Management Systems (DBMS). For example, Oracle is frequently used to store corporate data, MySQL serves as the back-end storage for most webstores, and SQLite stores personal data such as SMS messages on a phone or browser bookmarks. Each DBMS manages its own storage (within the operating system), thus databases require their own set of forensic tools. While database carving solutions have been built by multiple research groups, forensic investigators today still lack the tools necessary to analyze DBMS forensic artifacts. The unique nature of database storage and the resulting forensic artifacts require established standards for artifact storage and viewing mechanisms in order for such advanced analysis tools to be developed. In this paper, we present 1) a standard storage format, Database Forensic File Format (DB3F), for database forensic tools output that follows the guidelines established by other (file system) forensic tools, and 2) a view and search toolkit, Database Forensic Toolkit (DF-Toolkit), that enables the analysis of data stored in our database forensic format. Using our prototype implementation, we demonstrate that our toolkit follows the state-of-the-art design used by current forensic tools and offers easy-to-interpret database artifact search capabilities. 
    more » « less
  8. The pervasive use of databases for the storage of critical and sensitive information in many organizations has led to an increase in the rate at which databases are exploited in computer crimes. While there are several techniques and tools available for database forensic analysis, such tools usually assume an apriori database preparation, such as relying on tamper-detection software to already be in place and the use of detailed logging. Further, such tools are built-in and thus can be compromised or corrupted along with the database itself. In practice, investigators need forensic and security audit tools that work on poorlyconfigured systems and make no assumptions about the extent of damage or malicious hacking in a database. In this paper, we present our database forensics methods, which are capable of examining database content from a storage (disk or RAM) image without using any log or file system metadata. We describe how these methods can be used to detect security breaches in an untrusted environment where the security threat arose from a privileged user (or someone who has obtained such privileges). Finally, we argue that a comprehensive and independent audit framework is necessary in order to detect and counteract threats in an environment where the security breach originates from an administrator (either at database or operating system level). 
    more » « less
  9. Database Management Systems (DBMSes) secure data against regular users through defensive mechanisms such as access control, and against privileged users with detection mechanisms such as audit logging. Interestingly, these security mechanisms are built into the DBMS and are thus only useful for monitoring or stopping operations that are executed through the DBMS API. Any access that involves directly modifying database files (at file system level) would, by definition, bypass any and all security layers built into the DBMS itself. In this paper,we propose and evaluate an approach that detects direct modifications to database files that have already bypassed the DBMS and its internal security mechanisms. Our approach applies forensic analysis to first validate database indexes and then compares index state with data in the DBMS tables. We show that indexes are much more difficult to modify and can be further fortified with hashing. Our approach supports most relational DBMSes by leveraging index structures that are already built into the system to detect database storage tampering that would currently remain undetectable. 
    more » « less
  10. Database Management Systems (DBMSes) secure data against regular users through defensive mechanisms such as access control, and against privileged users with detection mechanisms such as audit logging. Interestingly, these security mechanisms are built into the DBMS and are thus only useful for monitoring or stopping operations that are executed through the DBMS API. Any access that involves directly modifying database files (at file system level) would, by definition, bypass any and all security layers built into the DBMS itself. In this paper, we propose and evaluate an approach that detects direct modifications to database files that have already bypassed the DBMS and its internal security mechanisms. Our approach applies forensic analysis to first validate database indexes and then compares index state with data in the DBMS tables. We show that indexes are much more difficult to modify and can be further fortified with hashing. Our approach supports most relational DBMSes by leveraging index structures that are already built into the system to detect database storage tampering that would currently remain undetectable. 
    more » « less